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The method described in the preceding paper [J. J. Salacuse, A. R. Denton, and P. A. Egelstaff,
preceding paper, Phys. Rev. E 53, 2382 (1996)] for computing the static structure factor S(Q) of a bulk
fluid is used to analyze molecular dynamics computer simulation data for a model krypton fluid whose
atoms interact via a truncated Aziz pair potential. Simulations have been carried out for two system
sizes of N =706 and 2048 particles and two thermodynamic states, described by a common reduced tem-
perature T*=1.51 and reduced densities p*=0.25 and 0.4. Results presented include the N-particle ra-
dial distribution function gy(7) and the bulk static structure factor S(Q). In addition we calculate the
direct correlation function ¢ (#) from the full S(Q). In comparison with corresponding predictions of the
modified hypernetted chain theory, the results are generally in excellent agreement at all » and Q, to
within random statistical errors in the simulation data.

PACS number(s): 61.20.Gy, 61.20.Ja, 02.70.Ns, 05.70.Ce

I. INTRODUCTION

In the preceding paper [1] (paper I) we have presented
a method for computing the static structure factor S (Q)
of a uniform bulk fluid from computer simulation data
for a finite (N-particle) system. Starting from the Fourier
transform relation between S (Q) and the radial distribu-
tion function g (r) [Eq. (1a) in paper I] and exploiting a
theoretical O(1/N) finite-size correction for the N-
particle function gu(7) [Eq. (18) in paper I], the method
prescribes a corresponding analytic correction for the N-
particle distribution function Sy(Q,R) that yields the
bulk S (Q) at radial distances R that lie within the asymp-
totic range of gy(r). Consequently, the thermodynamic
state should not be near the critical point and the density
should not be large, in order that g () may decay to near
its asymptotic limit within the range of the simulation
box. The method is expected to be valid for all wave-
vector magnitudes Q (including @=0) and for thermo-
dynamic states for which S(0) (proportional to the iso-
thermal compressibility) remains of order unity. For
practical applications it is important that the derivatives
of g (r) with respect to density [see Eq. (19) of paper I] are
negligible, so that the simplified Egs. (22) and (23) of pa-
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per I become applicable.

In the present paper, in order to demonstrate and test
the above method, we determine S(Q) at all Q from
molecular dynamics (MD) simulations of a dense krypton
fluid. Also we compute the correlation functions for the
infinite system on the basis of the modified hypernetted
chain equation (MHNC), which gives accurate results at
the states used here. In Sec. IT we begin by describing the
details of our simulations and then explain our analysis of
the data to extract S(Q). In Sec. III we present our
(MD) results, which include standard plots of g (7) vs 7,
illustrating the finite-size effects, and of the final S(Q) vs
Q. For comparison we show the corresponding predic-
tions of MHNC integral equation theory. In Sec. IV we
discuss the accuracy of our results and potential limita-
tions of our method and present the data on the direct
correlation function. In Sec. V we summarize our results
and draw conclusions regarding the utility of our
method. Finally, in the Appendix we briefly review our
use of the MHNC integral equation.

II. SIMULATIONS AND ANALYSIS

We have carried out a series of MD simulations for a
dense krypton fluid in which the particles were made to
interact via the Aziz pair potential [2], characterized for
krypton by the parameters 0,=3.579 A (atomic diame-
ter) and €/kz =200 K (well depth), with the potential
truncated and shifted to zero at a cutoff distance of

2390 ©1996 The American Physical Society



53 FINITE-SIZE EFFECTS IN MOLECULAR ... . II. ...

r.=40, The simulation program is based on a fifth-
order Gear predictor-corrector algorithm [3] that solves
the classical equations of motion for the particle trajec-
tories in the microcanonical ensemble, with periodic
boundary conditions. The simulations were performed
for two system sizes N=706 and 2048 and at two
different thermodynamic states, defined by a common re-
duced temperature T*=kzT /e=1.51 and reduced den-
sities p* =pod of 0.25 and 0.4. (For comparison, the crit-
ical point of krypton occurs at T*=1.05, p*=0.3.)
These system sizes and states were chosen to best illus-
trate the application of our method since their compressi-
bilities are relatively large and since implicit size effects
are expected to be negligible [1]. During the initial
equilibration stage, the velocities were periodically res-
caled to maintain the desired constant temperature. For
each choice of N and p* several independent simulations
were performed, ranging in duration from 25X 10* to 10°
time steps, corresponding to a physical time range of
roughly 1250-5000 ps. The simulations were run on
IBM RS/6000 computer workstations.

During the simulations, the configurations (particle
coordinates) were periodically stored and subsequently
analyzed to determine Sy(Q,R) by the following pro-
cedure. From a given coordinate set at time f; say, cor-
responding to the kth time step, a particle i is chosen ar-
bitrarily and all particles j contained within a sphere of
radius R centered on the chosen particle are identified.
The factor [sin(Qr,-j)/Qrij], r;; being the distance be-
tween particles i and j, is then summed over all j (includ-
ing j=i). Next, another particle i is chosen, the same
sum is calculated, and the process is repeated until every
particle has served as the central particle. Finally, the
average over all i=1,...,N of the calculated sums
represents a single estimate, at time f;, of the quantity
(N(Q,R)), which appears in Eq. (4a) of paper I. This es-
timate, which we denote by X,(Q), may be expressed
more concisely in the form

N N | sin[Qr;(t,)]
X,(<Q>=—}\;i:1j:1 W Ay(R)
2 N2t N [sin[Qry(5)]
=5 3 j:lzﬂ Qr,-j(]tk) = ]Aijk(R)+N )
(1a)
where
1 if r (1) <R
Ay (R)= 1 if r,(5,)>R , (1b)

and r;(1;)=|r;(t;)—r;(t;)| is defined as the minimum
distance at time t;, between particle i at position r;(;)
and either particle j or its nearest periodic image
(minimum image convention).

Now the average of the estimates X, (Q) over some
number M of independent coordinate sets, defined by

M
oM=L 3 x.(0, )
M =
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where M is limited in practice by the duration of the
simulation, represents an approximation for { N(Q,R))
that clearly improves in accuracy with increasing M.
Furthermore, each estimate is derived from a sample
whose variance may be approximated by

M
aizﬁ S [X,(Q)—X(Q,M?, (3)
k=1

and thus the variance in X(Q, M) is given by

M
aﬁ{=$ai=# 3 (X, (0)—X(Q,M)] . )

As a measure of the uncertainty in X(Q, M), we take the
standard deviation o, and write

(N(Q,R))=X(Q,M)*o,, , (5)

with the usual understanding that about 68% of the esti-
mates fall within o ,, of X(Q, M), about 95% within 20,
etc. Now combining Eq. (4) of paper I with Eq. (5)
above, we obtain

Sy(Q,R)=X(Q,M)—4mpR>*u (QR)*0,, , C(6)
with the Q=0 limit
Sy(0,R)=X(0,M)—4mpR’*t0,, . (7)

Equation (7) provides a practical means of extracting the
function Sy(0,R) from simulation data, which when sub-
stituted into Eq. (23) of paper 1 at sufficiently large R
leads to an approximate S(0). Finally, substituting this
S (0), together with the large-R Sy(Q,R) [from Eq. (6)],
into Eq. (22) of paper I yields in turn a well-defined ap-
proximation for S(Q) at arbitrary Q. This procedure as-
sumes that the density derivative terms of g(r) give a
negligible contribution to the correction, and it will be
shown later that this is so for the present cases.

Now Eq. (5) is strictly valid only if the estimates
X (Q), k=1,...,M, used to compute X(Q,M) are sta-
tistically independent. To ensure independence, succes-
sive configurations must be separated by a time interval
sufficiently long to eliminate significant correlations. As
a means of determining a sufficient length of interval, we
have computed the N-particle intermediate scattering
function I,(Q,t,R) [Eqgs. (27b) and (28) of paper I] at
Q=0, which has the character of a time correlation func-
tion. The key quantity in the calculation {N(Q,t,R))
may be computed by a procedure similar to the one de-
scribed above for determining ( N(Q,R)), with the ex-
ception that at time (¢, +1¢) particles are counted within a
sphere of radius R that at an earlier time ¢, was centered
on a particle. The function I(0,¢,R) thus reflects, as a
function of time, the loss of memory of the initial pres-
ence at t=0 of a central particle. Equivalently, it mea-
sures the degree of correlation between configurations
separated by time z. Note that in general, for fixed N,
Iy(Q,t,R)—>0ast— oo.

An estimate of (N(Q,t,R)) at time t,, which we
denote by X, (Q,t), may be expressed in the form [cf. Eq.
(1a)]
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Sin[Qrij(tk’t)]
Qrij(tk,t)

where r;(t;,0)=Ir;(t;)—r;(ty +2)| and A, (4,R) is
defined as in Eq. (1b) but with r;;(#, ) replaced by r;;(¢;,1).
As before, an average of the estimates X, (Q,?) over
configurations gives an approximation for {N(Q,t,R)),
which may be substituted into Eq. (28a) of paper I to ob-
tain an approximation for Iy(Q,t,R). Since our objective
is to roughly assess the correlation (or decay) time of
1,(0,t,R), we do not concern ourselves with the standard
deviation of the estimates.

Aijk(t)R) ’ (8)

1 N N
Xk(Q,t)_F ,«2 j§

=1 1

III. RESULTS: MD AND MHNC DATA
AND ANALYSIS

As mentioned above, we have carried out MD simula-
tions at two reduced densities p*=0.4 and 0.25 and ana-
lyzed the data to compute S (Q) by the method described
in paper 1. In this section we first present MD results for
the p*=0.4 case, followed by results for the p*=0.25
case. For comparison, we present results from the corre-
sponding MHNC calculations [4], obtained using the
method described in the Appendix. Since the MHNC
data are expressed in units of the reduced variables r /o,
and Qo ,,, where o,, =4.012 A is the distance at which
the Aziz potential reaches its minimum, functions of r
and Q will often be expressed in these same units.

A. Case1: p*= 04

We begin by presenting our results for the N-particle
radial distribution function gy(7). Although it is not
strictly necessary to compute g, (r) in order to determine
S (Q) by our method, it nevertheless serves as a simple
and useful check on the accuracy of the simulations and
directly illustrates the finite-size effects. Furthermore,
knowing the behavior of gy (r) helps in understanding the
behavior of the distribution function Sy (Q,R). As an ex-
ample, Fig. 1 shows gy () vs r for N=706, determined by
analyzing the MD configurations using standard methods
[3]. The error bars in all figures reflect statistical uncer-
tainty of plus or minus one standard deviation. These
data represent an average over 188 configurations, each
configuration yielding one estimate of g (7).

To ensure independence of the estimates, as discussed
previously, we selected configurations separated by a
fixed time interval of 15 ps plus a random interval be-
tween O and 15 ps, giving an average separation of about
23 ps. Inclusion of a random interval allows a different
subset of configurations to be selected simply by varying
the seed of the random number generator. Averaging re-
sults over different seeds then allows for optimal use of
the MD data, a point we elaborate on below with regard
to the calculation of Sy(0,R). The average separation
between configurations necessary to ensure independence
of the estimates was determined by examining the time
dependence of the time correlation function Iy(0,¢,R).
As Fig. 2 illustrates, I(0,t,R) generally decays with in-
creasing time as successive configurations become un-
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correlated with an arbitrarily chosen initial configuration.
When the function has decayed sufficiently, after an inter-
val At say, estimates obtained from configurations
separated in time by Az may be assumed independent. Of
course, the more rigorously that independence is en-

2 T T T T J(a)

1.5

FESUTETE ETSTRTa |

gn(r)

0.5

LA B S S S B AL S SR L |

s a b

o
—
1 M)
w

o] S —

(b)
1.04

1.02

gn(r)

0.98

LA (LANLANL IS L AN S B S S BN N N B BN S

0.96

1
S PR U BT BT B

00—

(c)
1.004

1.002

gu(r)

—

0.998

Lo o by b b a bayy

0.996

LA NNLA LN LA S NNLANL S B (LS S S N

r (units of o)

FIG. 1. Radial distribution function gy(r) vs radial distance
r in units of o, (distance of Aziz pair potential minimum) for
N=1706, p*=0.4. The dots denote our MD simulation data, the
solid curve the MHNC results and the dotted curve the asymp-
totic limit [1—S(0)/N], according to Eq. (2) of paper I. Panels
(a), (b), and (c) highlight the first, second, and third peaks, re-
spectively. Panel (c) also includes the MD error bars.
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forced, by lengthening At, the fewer the number of esti-
mates available (for a given total simulation time) and
hence the greater the statistical uncertainties. As a prac-
tical compromise, we have adopted the following simple
criterion for independence: Two configurations separated
by a time interval At are deemed to be independent if
I5(0,At,R)/IN(0,0,R)<0.15 for all R. The cutoff value
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FIG. 2. Time correlation function Iy(0,¢,R) [related to inter-
mediate scattering function Iy(Q,t) at Q=0] vs time ¢ for vari-
ous system sizes, states, and radial distances R in units of o,,:
(a) N=706, p*=0.4, R=3 (squares), R=5 (circles); (b) N=706;
p*=0.25, R=3 (squares), R=6 (circles); and (c) N=2048,
p*=0.25, R=6 (squares), R=38 (circles).
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of 0.15 was chosen empirically. Smaller values (for
longer A?’s) were found not to significantly change the re-
sults, but merely to increase the statistical errors. For
N=706, Fig. 2(a) shows that after an interval Ar=23 ps,
In(0,t,R) has decayed to less than 15% of its initial value
(at £=0).

Also shown in Fig.1, for comparison, are the corre-
sponding MHNC predictions for gy(r). Since MHNC
theory actually produces the infinite-system function
g (r), we convert (see the Appendix) to gy(r) by subtract-
ing S(0)/N, according to Eq. (2) of paper I, using the
MHNC value of S(0)=0.9078 for this purpose. For
reference, the expected asymptotic limit
gn(r)~1—8(0)/N is also indicated in Fig. 1.

We now turn to our results for the N-particle distribu-
tion function Sy(Q,R), its infinite-system counterpart
S (Q,R), and ultimately the desired static structure factor
S(Q). The finite-size correction that converts Sy(Q,R)
to S(Q,R) [Eq. (22) of paper I] requires a determination
of S(0). To this end, we first compute the function
Sy(0,R), i.e., Sy(Q,R) at Q=0, by means of Eq. (7). The
data for N="706 represent an average over 188 estimates,
obtained from configurations separated by an average of
23 ps [composed of a fixed 15-ps interval plus a random
interval between 0 and 15 ps, as noted above for gy(r)].
For N=2048, we averaged over 88 estimates, separated
by an average of 30 ps. A longer separation was used be-
cause Iy(0,t,R) decays more slowly for the larger system.
This behavior is consistent with the tendency of
Iy(0,t,R) towards a time-independent constant as N in-
creases, the bulk limit (N-— o) being 1(0,z,R)=S(0),
for R sufficiently large and ¢ finite. We note that the use
of a random interval here ensures that Sy(O,R) at
different values of R is obtained from different subsets of
configurations. Figure 3 and Table I give our results for
Sy(0,R) vs R for N=706 and 2048, together with the
corresponding MHNC predictions. To obtain the latter,
we used Eq. (22) of paper I, with the MHNC values of
S(0) and S(O,R).

TABLE 1. Simulation and MHNC data for Sy(0,R) at

p*=04.

N=706 N=2048

R/o, Simulation MHNC Simulation MHNC
1.5 0.724+0.006 0.712 0.724+0.005 0.717
2.0 0.648+0.011 0.609 0.650+0.008 0.624
2.5 0.7361+0.015 0.719 0.762+0.012 0.749
3.0 0.763+0.021 0.735 0.823+0.017 0.788
3.5 0.741+0.026 0.716 0.824+0.023 0.800
4.0 0.708+0.031 0.681 0.846+0.028 0.807
4.5 0.631+0.035 0.609 0.825+0.038 0.789
5.0 0.506+0.038 0.517 0.802+0.040 0.765
5.5 0.751+0.047 0.726
6.0 0.668+0.047 0.678
6.5 0.607+0.052 0.618
7.0 0.546+0.051 0.548
7.5 0.4341+0.054 0.466
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From the behavior of gy(r), the general appearance of
Sy(0,R) may be understood as follows. Differentiating
Eq. (3b) of paper I with respect to R at Q=0 yields the
relation

dSy(0,R)
dR

Hence Sy(0,R) is an increasing function of R wherever

=4mpR*[gy(R)—1] . 9)
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FIG. 3. Distribution function Sy(0,R) vs R (in units of o,,)
for p*=0.4: (a) MD data for N=706 (triangles) and N=2048
(circles); (b) MD data (triangles) compared with MHNC results
(squares) for N=706; and (c) MD data (circles) and MHNC re-
sults (squares) for N=2048.
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gn(R)>1 and a decreasing function wherever gy(R)<1.
As seen from Fig. 1, when N=706, gy(R)<1for R 23.2,
which accounts for the monotonic decrease of Sy(0,R) in
the same region seen in Fig. 3. In general, the concave
shape of Sy(0,R) can be attributed to the structure of
gn(R). As N increases, the asymptotic limit of
gy(R)~1—S(0)/N also increases, causing the maximum
of Sy(0,R) to grow in amplitude and to shift to larger
values of R.

The technique of separating estimates by a time inter-
val consisting of both a fixed and a random element is
used consistently throughout this work. As an illustra-
tion of this technique, we elaborate on the calculation of
Sy(0,R). For a given value of R, say R, starting with
the initial configuration, estimates of Sy(0,R;) are ob-
tained, each configuration giving one sample. The aver-
age separation in time of the configurations is made large
enough to ensure that the estimates are essentially in-
dependent. Use of a random time interval eliminates the
possibility of sampling the data set at an interval corre-
sponding to a local maximum in the correlation function,
which would increase the correlation between estimates.
Assuming independence, estimates of Sy(0,R;) and its
standard deviation are obtained. Another value of R, say
R,, is selected and the entire process, starting with the
initial configuration, is repeated to obtain an estimate of
Sy(0,R,). The random time interval ensures that, in gen-
eral, estimates of Sy(O,R,) and Sy(0O,R,) are not ob-
tained from the same set of configurations. Samples asso-
ciated with distinct value of R, however, may not be
separated by a large enough time interval to guarantee
the independence of the estimates of Sy(0,R;) and
Sy(0,R,). Thus, for example, the entries in Table I of
the simulation Sy(0,R) may not be statistically indepen-
dent of one another.

Having computed Sy (0,R) by MD simulation, we next
approximate S (0) by means of Eq. (23) of paper I, which,
for sufficiently large R, we expect to be accurate to
O(1/N). Table II lists the resulting estimates of S(0)

TABLE II. Estimate of S(0) via Eq. (23) of paper I at
p*=04.
S(0)
R/o, N=706 N=2048
1.5 0.73+0.01 0.73+0.01
2.0 0.67+0.01 0.66+0.01
2.5 0.78+0.02 0.78+0.01
3.0 0.8410.02 0.85+0.02
35 0.86+0.03 0.87+0.02
4.0 0.90+0.04 0.91+0.03
4.5 0.91+0.05 0.92+0.04
5.0 0.87+0.07 0.94+0.05
5.5 0.93+0.06
6.0 0.89+0.06
6.5 0.89+0.08
7.0 0.90x0.08
7.5 0.84x0.11
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over a range of R. The minimum value of R for which
the approximation is reliable may be identified as the
value beyond which gy(R) is essentially constant to
within statistical fluctuations. For N=706, Fig. 1 indi-
cates that gy(R)~const for R /o,, 24.0. Furthermore,
from Table II, S(0) is also seen to be essentially constant
in this region. Thus, averaging the N=706 entries in
Table II at R /o,, =4.0, 4.5, and 5.0 yields the prediction
S(0)=0.89+0.05, which is in good agreement with the
MHNC value of 0.9078.

For N=2048, the same technique may be used to
define the appropriate large-R limit of Eq. (23) of paper I
from inspection of the long-range tail of gy(R). Alterna-
tively, in the absence of gy(R), the limit may also be
identified as the distance at which Sy(0,R) reaches its
maximum. The decrease of Sy (0,R) beyond this distance
implies that gy(R)—1<0. As seen from Table I, from
N=2048, Sy(0,R) reaches its maximum at approximate-
ly R/o,, =4.0. Assuming that the upper and lower
bounds of the function [gy(R)—1] are roughly equidis-
tant from its asymptotic limit of —S(0)/N leads to the
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FIG. 4. Distribution function S(0,R) vs R (in units of o,,)
for p*=0.4: (a) MD data (triangles) compared with MHNC re-
sults (squares) for N=706 and (b) MD data (circles) and MHNC
results (squares) for N=2048.
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bounds —2S(0)/N <gy(R)—1<0 for R /o, =4.5.
This in turn suggests that oscillations in gy(R) are rela-
tively weak for R /o,, 2 4.5 and we assume gy(R) to be
essentially constant in this region to within statistical un-
certainties inherent in the simulation data. Hence the en-
tries in Table II for R /o, 24.5 may be taken to
represent the asymptotic limit of Eq. (23) of paper I.
Averaging the entries at R /o ,, =4.5-7.5 then yields the
independent prediction S(0)=0.90+0.07, the statistical
error being larger than for N=706 because of shorter
runs for N=2048. The averaging technique is particular-
ly useful when S(0) exhibits significant fluctuations at
large R. Although the large- and small-system predic-
tions of S (0) are consistent with each other, the latter
were naturally considerably easier to compute. In Sec.
IV we discuss the relative advantages of large- and
small-system simulations for the determination of S (Q).
Another form of comparison between our MD simula-
tion method and MHNC theory is illustrated by Fig. 4,
where the MD Sy (0,R) has been converted to S (0,R) via
Eq. (22) of paper I, using the appropriate MD values of
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FIG. 5. Compressibility ratio S(0), obtained from MD data
for p* =0.4 using the “difference formula” approach: (a) S(0) vs
R for Q=0 and (b) S(0) vs Q for R=5 (in units of o,,). The er-
ror bars are determined by the uncertainties in Sy(Q,R) in Eq.
(24) of paper I [1].
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§(0). The fact that S(O,R) reaches its asymptotic
(large-R) limit for R <L /2 confirms that the N=706 sys-
tem is sufficiently large for our method to be applicable.
In general, however, we expect the method not to be reli-
able for systems so small that S(0,R) fails to reach a pla-
teau by R =L /2, since in this case S (0) cannot be accu-
rately predicted. Note that the plateau level of S(0,R)
agrees with the value of S(0) predicted by Eq. (23) of pa-
per I, as it should for consistency.

We have also attempted to determine S(0) by the ap-
proach based on the “difference formula” [Eq. (24) in pa-
per I]. Figure 5 shows the resulting .S (0), both as a func-
tion of R at fixed Q and as a function of Q at fixed R.
The results are in fair agreement with the previous pre-
diction and are seen to be essentially independent of Q, as
expected, for Q smaller than the first zero of u(QR),
which for R =50,, occurs at Q=10 '. Although the
rather large inherent uncertainties limit the utility of this
approach, the consistency between predictions obtained
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by two different means does serve as a useful check on the
calculations.

The distribution function Sy(Q,R) was calculated via
Eq. (6) and is shown in Fig. 6. Finally, having deter-
mined S(0) as described above, we obtain S(Q,R) after
making the finite-size correction prescribed by Eq. (22) of
paper 1. For R sufficiently large, i.e., within the asymp-
totic range of gy(r), S(Q,R) is approximately S(Q).
Averaging over the asymptotic range of gy(r)
(specifically R /o,,=4.0, 4.5, and 5.0 for N=706) then
yields a more precise result for the bulk S(Q), which is
plotted vs Q in Fig. 6, together with the corresponding
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FIG. 6. N-particle distribution function Sy(Q,R=5) (R in
units of o,,) [dotted curve in (a), triangles in (b)] and bulk static
structure factor S(Q) [solid curve in (a), circles in (b)] vs wave-
vector magnitude Qo ,, for N=706, p* =0.4. Also shown in (b)
are the MHNC results (squares) for S(Q).
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FIG. 7. Same as Fig. 1, but for N=2048, p* =0.25.
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MHNC predictions for S(Q). As Fig. 6 clearly illus-
trates, the finite-size effects become increasingly
significant as Q —0.

B. Case 2: p*=0.25

The second state that we have considered presents
more of a challenge to our method, as it is somewhat
closer to the critical point. This is reflected in the slight-
ly longer range of gy (r) in comparison with the first state,
characteristic of near-critical behavior, as seen in Fig. 7
for N=2048. Asin Fig. 1, the MHNC theoretical predic-
tions, adjusted for finite-size effects using the MHNC
value of S(0)=1.6388, are also shown, together with the
expected asymptotic limit. The MD data were obtained
by averaging over 66 independent configurations, in-
dependence being ensured by separating configurations
with a fixed interval of 50 ps plus a random interval be-
tween O and 50 ps, for an average separation of Ar=75
ps.
Our results for Sy(0,R) are presented in Table III,
alongside the size-adjusted MHNC predictions. For
N=706, an average separation interval of Ar=22.5 ps
(comprising a fixed 15-ps interval plus a random interval
between 0 and 15 ps) was found to be sufficient, allowing
an average over 333 independent configurations. Note
that this is a significantly shorter interval than the 75 ps
found necessary for the larger system. These intervals
were again determined empirically by the requirement
that the time correlation function Iy(0,¢,R) be smaller
than 15% of its initial value. As Figs. 2(b) and 2(c) illus-
trate, the decrease in the decay rate of Iy(0,¢,R) with in-
creasing N is more pronounced for this state, which may
reflect the closer proximity to the critical point.

In Table IV we list estimates of S(0), over a range of
R, as obtained via Eq. (23) of paper I. Averaging the en-
tries for N=706 over R /o ,, =5.0-6.0 yields the predic-

TABLE III. Simulation and MHNC data for Sy(0,R) at
*
p =0.25.

N=706 N=2048
R/o,, Simulation MHNC Simulation MHNC
1.0 0.350+0.002 0.348 0.351+0.003 0.349
1.5 1.045+0.005 1.038 1.049+0.006 1.044
2.0 1.097+0.008 1.082 1.105+0.011 1.099
2.5 1.260+0.012 1.261 1.303+0.019 1.295
3.0 1.336+0.018 1.320 1.367+0.028 1.379
3.5 1.337+0.023 1.346 1.501£0.033 1.441
4.0 1.303+0.028 1.324 1.511+0.054 1.466
4.5 1.279+0.034 1.266 1.523+0.057 1.468
5.0 1.206+0.036 1.172 1.537+0.067 1.450
5.5 1.097+0.039 - 1.045 1.402+0.071 1.416
6.0 0.892+0.043 0.884 1.361+0.077 1.366
6.5 1.311+0.094 1.303
7.0 1.250+0.098 1.226
7.5 1.27+0.11 1.135
8.0 1.11£+0.12 1.030
8.5 0.98+0.12 0.911
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TABLE IV. Estimate of S(0) via Eq. (23) of paper I at
p*=0.25.

S(0)

R /o, N=1706 N=2048
1.5 1.05+0.01 1.05+0.01
2.0 1.121+0.01 1.11+0.01
2.5 1.3040.01 1.32+0.02
3.0 1.421+0.02 1.394+0.03
3.5 1.47+0.03 1.55+0.03
4.0 1.50+0.03 1.58+0.06
4.5 1.58+0.04 1.63+0.06
5.0 1.631+0.05 1.69+0.07
5.5 1.68+0.06 1.59+0.08
6.0 1.63+0.08 1.61+0.09
6.5 1.63+0.12
7.0 1.66+0.13
7.5 1.82+0.16
8.0 1.76+0.19
8.5 1.76+0.22

tion S(0)=1.65+0.06. Similarly, averaging the N=2048
entries over R /o ,, =6.0-8.5 yields the independent pre-
diction S(0)=1.71£0.15, which is in agreement with the
MHNC value of 1.6388. Using the MD values of S(0) to
make the finite-size correction to Sy(0,R), we obtain the
results for S (0,R) plotted vs R in Fig. 8, where the pla-
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FIG. 8. Same as Fig. 4, but for p*=0.25.
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teau level is seen to be consistent with the previous pre-
dictions of S(0).

The distribution function Sy(Q,R), calculated via Eq.
(6), is shown in Figs. 9 and 10. Finally, using S(0) to
correct Sy(Q,R), as in the previous case, leads to
S(Q,R). Averaging S(Q,R) over the highest few values
of R (for N=706, R /o, =5.0, 5.5, and 6.0, and for
N=2048, R /o, =6.5-8.0) then yields the bulk static
structure factor S'(Q), which is plotted in Figs. 9 and 10
for N=706 and 2048, respectively. Comparing these two
figures, it is interesting to observe that for the larger sys-
tem the finite-size effects are not only weaker, but also set
in at a smaller value of Q.

We conclude this section by justifying our neglect, in
the calculation of S(Q,R), of the density derivative term
in Eq. (21) of paper I. First, we note that Egs. (21) and
(3a) of I may be rewritten in the form

s<Q,R>=SN<Q,R)+%F(Q,RHOU/NZ), (10)

where
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F(Q,R)EpS(O)g—wR *u (QR)

S(0) R sin(Qr)
+ dmp [ “drr? or
2 .,
X“apz {p*lg(rN—11} . (11)

We discuss the role of the two contributions to F(Q,R).
F(Q,R) is largest at Q =0 and at the densities p*=0.25
and 0.4 the second contribution in Eq. (11), which de-
pends on the density derivative, is only of order of 1% of
the first. Therefore this term is completely negligible at
Q=0 and at small Q, so that the simplified expressions
(22) and (23) of paper I can be used in the analysis of the
simulation results. At larger Q the second term in Eq.
(11) becomes comparable to the first, but in this range of
Q the function F(Q,R)/N becomes so small that it can be
neglected.

We can also perform another check on the assumptions
behind this method. Under the conditions of the simula-

Sv(Q.R) and S(Q)

PSS S S S S U U S U G R U

o
n
.
2]
@

10

} H(b)
8 1.5 } { f |
n r i B
T [ 1t¥s ]
I S SR ]
— { i £ )
2=} 1+ x —
g i z : 3 B
U)Z - & * ‘& 4
- = "

PSR R S PR | IS S SR S N
955 0.5 1 1.5 2
Qo

FIG. 10. Same as Fig. 6, but for N=2048, p*=0.25, and
R=38 in units of o,



53 FINITE-SIZE EFFECTS IN MOLECULAR . ..

tion gy(r) at large r is found to have reached its asymp-
totic value to within the noise of the simulation. From
theory we can compute the quantity
A(Q,R)=S(Q)—S(Q,R), where R is half the size of the
simulation box or larger. Then A(Q,R) for R >L /2
gives the contribution to S(Q) due to g(r) at distances
that are not accessible to the simulation. Again the con-
tribution is largest at @Q=0. In the case of N=706,
A(O,L /2) at p*=0.4 is 10% of the 1/N correction, i.e.,
F(0,L /2)/N, and 5% at p*=0.25.

A numerical comparison between F(O,R) and the
quantity 27pR 35(0) shows it to be an excellent approxi-
mation to F(0,R) (accurate to within 1%) for R > 40 ,,.
Given the size of the 1/N correction to Sy(0,R), this
means that correlations at distances beyond L /2 give a
contribution to S(0) that is within the statistical uncer-
tainty of the simulation value and this gives support to
the method of analysis of the simulation data.

IV. DISCUSSION

In evaluating the results of the preceding section, we
first note that the close agreement between our MD data
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FIG. 11. Bulk direct correlation function c(r) for the same
states and notation in Figs. 6 and 9: (a) N=706, p*=0.4 and (b)
N=706, p*=0.25. Fourier transforming our MD data for S(Q)
in the range 0 < Qo ,, <100 yields ¢ (r) accurately for r (in units
of 0,) >2m/100 (solid curves). For comparison, the corre-
sponding MHNC results are indistinguishable from the above
result on the scale shown.
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and the MHNC predictions for g,(r), as seen in Figs. 1
and 7, indicates consistency at this level between MD
simulation and MHNC theory. Our subsequent predic-
tions of S(0) for the p*=0.4 state—0.89+0.05 for the
706-particle simulation and 0.90%£0.07 from the 2048-
particle simulation—are both in good agreement with
the MHNC value of 0.9078. Similarly, for the p* =0.25
state, the small- and large-system predictions of S(0)—
1.65+0.06 and 1.71x£0.15, respectively —compare favor-
ably with the MHNC value of 1.6388. Predictions of
S (Q), as illustrated in Figs. 6, 9, and 10, are seen to be in
excellent agreement with corresponding MHNC results,
aside from a slight discrepancy in the range
05=Qo,, =1.5.

We have demonstrated that our method gives con-
sistent results as N varies between 706 and 2048. There is
a relationship, however, between the uncertainties associ-
ated with predictions of the method and the system size
N, which we now briefly describe. Consider Eq. (23) of
paper I, which, as previously noted, holds for R values at
which gy(R) has reached its asymptotic limit. In the
p*=0.4, N=706 case, Fig. 1 shows that to within the un-
certainties of the simulation gy(R) is roughly constant for
R /o,, 24.0. Although this statement is rather qualita-
tive, note that for R /o,, 24.0 an equal number of data
points for gy(R) fall above and below the value
—S(0)/N, with a majority falling within one standard
deviation of —S(0)/N. Lengthening the simulation
would increase the number of estimates of g5(R) and of
Sx(0,R), which in turn would reduce the uncertainties in
these quantities and in the predicted value of S(0). Re-
ducing the uncertainty in gy(R), however, may expose
finer structure in this quantity at larger-R values, thus
shifting the asymptotic region to larger values of R. The
process of reducing the uncertainty in S(0) is therefore
limited for a fixed system size N, since at some point the
asymptotic region of gy (R) is shifted to R = L /2, render-
ing the method inapplicable. Put simply, for a given N
there is an upper limit to the practical duration of a simu-
lation beyond which it is not worthwhile to continue the
simulation. To achieve any further reduction in uncer-
tainty, N must be increased, necessitating simulations of a
larger system.

Another reason for determining the complete S (Q) for
a bulk fluid from a MD simulation is that we may calcu-
late the direct correlation function ¢ (#) from the Fourier
transform of Eq. (A2), for example. In Fig. 11 we show
the comparison of the function obtained from MHNC
and simulation. Excellent agreement is found, compara-
ble to that seen in Figs. 6, 9, and 10.

V. SUMMARY AND CONCLUSIONS

In this paper we have described in detail the numerical
implementation of our method, presented in the preced-
ing paper, for determining the static structure factor
S(Q) of a bulk fluid. To demonstrate and test the
method, we have carried out a series of molecular dynam-
ics computer simulations of a simple model of krypton
atoms interacting via a truncated Aziz pair potential.
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Simulation data (particle configurations) for two distinct
system sizes N and two thermodynamic states (T*,p*)
were analyzed to extract S (Q), in particular in the chal-
lenging low-Q range (including Q=0).

Independence of configurations was found to be crucial
to the accuracy of the results and was ensured by separat-
ing configurations by a suitable time interval. The tech-
niques of including a random element in the interval and
of averaging over seeds of the random number generator
permitted maximal use of the simulation data. For a
given system size and state, the appropriate interval was
determined empirically by examining the decay of time
- correlation function related to the intermediate scattering
function. Longer intervals were required for the larger
system due to a slower decay of correlations.

Estimation of the compressibility ratio S(0) by three
different approaches—from (i) Sy(0,R) via Eq. (23) of
paper I, (ii) the plateau level of S(O,R), and (iii) the
“difference formula” [Eq. (24) of paper I]—gave con-
sistent results, although the first two approaches were
found to be superior to the third. Furthermore, the re-
sults for S(Q) were essentially independent of N. Con-
sistency and N independence of the results represent im-
portant tests and give support to the three main approxi-
mations underlying the method, these being (i) truncation
to O (1/N) of the series expansion for g, (r), (ii) neglect of
the density derivative term in the O (1/N) coefficient of
the series, and (iii) neglect of implicit size effects.

In comparison with corresponding predictions of
MHNC theory, the results for gy(r) and S(Q) were
found to agree usually quite closely. These comparisons
may be interpreted either as a test of the O (1/N) finite-
size correction formula (assuming the accuracy of
MHNC) or as a test of MHNC theory (assuming the ac-
curacy of the correction formula). The slight discrepancy
between our results and MHNC predictions near
Qo,, =1 is admittedly difficult to account for. Whether
it reflects an artifact of one of our approximations or sig-
nals a slight inaccuracy in the theory is still an open ques-
tion.

A significant consequence of our ability to calculate
S(Q) at all Q from our simulations is that we may com-
pute the direct correlation function ¢ (r). Because it is a
central quantity in a number of theories of fluids, more
advanced tests of the usual theoretical assumptions will
become possible.

It is important to emphasize that the practical utility
of our method has been tested for certain thermodynamic
states and, for a given state, is limited to a certain
minimum system size. In particular, we have chosen
states near the critical density but with a temperature
sufficiently far from the critical point that .S (0) remains
of order unity. Sy(0,R) must pass through its maximum
as a function of R and this imposes a lower limit on the
size of the system and also implies that R =L /2 falls
within the asymptotic tail of gy(r). Furthermore, the
system must be large enough that implicit size effects due
to periodic boundary conditions have a negligible effect
on the structure.

In the preceding paper we also presented the time-
dependent generalization of our method to the intermedi-
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ate scattering function I(Q,t¢), which characterizes the
dynamics of a system. Application of the method to cal-
culations of I (Q,t) will be the subject of future studies.
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APPENDIX: SUMMARY OF THE MHNC
INTEGRAL EQUATION SOLUTION

The radial distribution function g () of the infinite sys-
tem can be obtained using the method of the integral
equation. The MHNC equation is known to be highly ac-
curate [4] and it reads

g(r)=exp[ —BP(r)+g(r)—1—c(r)+Eys(r;d)], (A1)

where ®(r) is the pair interatomic interaction, ¢ () is the
direct correlation function, which can be expressed in
terms of S (Q) via the relation

c(Q)=[1-S"'M1/p, (A2)

and Eyg(r;d) is the bridge function of hard spheres of di-
ameter d and at density p. The diameter d is determined
by a variational principle, and the relevant equation, the
expression of Eyg, and details on the numerical method
used to solve Egs. (A1) and (A2) can be found in previous
work [4]. In order to make contact with the result of a
simulation we may compute the theoretical estimate of
gn(r). From (18), (19a), and (20) of paper I we can write,
to eliminate O (1/N),

(L
gy(r)=g(r) N (A3)
5(0) 3% , _
c;=S(0)+ 5 apZ{ [g(rn—1]} (A4)

and from this we obtain Sy(Q,R) via (3b) of paper I. The
second density derivative in (A4) is computed by solving
the MHNC equation at closely spaced values of the den-
sity.

For completeness we write Egs. (21) and (3a) of paper 1
in the form

1

S(Q,R)=SN(Q,R)+FF(Q,RH—O(1/N2) , (AS)

where
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F(Q,R)=pS(o>§ﬂR3u(QR)
S(0) R 5 sin(Qr)
+p~——2 477'f0 drr ———~Qr

2
x 2 (pg(n—11} .

A6
» (A6)
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We have computed g(r), S(Q), S(Q,R), and the correc-
tion term F(Q, R) using the MHNC theory with the trun-
cated Aziz potential for krypton under the same condi-
tions as the simulation. The results are presented in the
figures and tables and reviewed in Sec. IV.
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